

SUPREME EDUCATION COUNCIL
هيئة التـعليـم

SCIENTIFIC ENGLISH

MATHEMATICS

AND
 SCIENCE

قَسَمًا بِمَنْ رَفْعَ السَّهَـَاء • قُسَمًا بِمَنْ نَشْرَ الضِّيَّاءْ

لون علم دولة قطر العنابي والأبيض ، وتفصل بين اللونين تسعة رؤوس.

رؤية قطر الوطنية 2030

تهـفـرؤيــة قطر الوطنية 2030 التي تمت المصادقة عليها بموجب الـقـرار الأميري رقم 44 لسنـة 2008، إلى تحويل قطـر بـحلــول عام 2030 إلى دولة متقدمة قادرة
 جيل. حيث تحـد الرؤيـة الوطنيـة لدولة قـطر النتــئـج التي يسعى البيلد لتحقيقها
 وخطط تنفيذها. وتستشرف الرؤيـة الوطنيـة الآفاق التتنمويـة من خلال الركائز الأربع المترابطة التاليـة :

سكان متعلهون :
ص نظام تعليمي يرقى إلى مستوى الأنظمة التعليمية العالمية المتميزة ويزود المواطنين بما يفي بحاجاتهه وحاجات المجتمع القطري، ويتضمن: - مناهج تعليه وبرامج تـريبب تستجيب لحاجات سور العات العمل الحالية والمستقبلية. -- برامج تعليهم مستمر مدى الحياة متاحة للجميع.

ص شبكة وطنية للتعليه النظامي وغير النظامي تجهز الأطفال والشباب القطريين بالمهارات اللازمة
 - ترسيخ قيه وتقاليد المجتمع القطري والمحافظة على تراثهـ. - تشجيع النشء على الإبداعواع والابتكار وتنمية القدرات. - غرس روح الانتهاء والمواطنة. - المشاركة يٌْ مجموعة واسعة من النشاطات الثقافية والرياضية

ص مؤسسات تعليمية متطورة ومستقلة تدار بكفاءة وبشكل ذاتي ووفق إرشادات مركزيـة وتخضع لنظام المساء
 مع الهيئات الدولية المختصة ومراكز البيحوث العـيا العالمية المرموقة.
 ص استقطاب التوليفة المرغوبة من العمالة الوافلدة ورعايـة حقوقها وتأمين سلامتها، والحفاظ على أصحاب المهارات المتميزة منها.
http://www.gsdp.gov.qa/portal/page/portal/GSDP_AR الأمانة العامة لالتخطيط التنتموي

Contents

Mathematics

Science

BIOLOGY		
UNIT 1 CELL ULTRA STRUCTURE		
Lesson 1	Animal and Plant Cell \& Two kinds of Cells	88
UNIT 2	BIOLOGICALLY IMPORTANT MOLECULES	
Lesson 2	Biologically important molecules 1	94
UNIT 3	ENZYME ACTION	
Lesson 3	Enzyme Action	98
UNIT 4	HUMAN TRANSPORT SYSTEM	
Lesson 4	Blood circulation of the heart	100
Lesson 5	Red blood cells	104
CHEMISTRY		
UNIT 1	STRUCTURE AND BONDING MATTER	
Lesson 1	Atomic Structure 1 \& 2	108
Lesson 2	Bonding	114
Lesson 3	Measuring Atoms	117
UNIT 2	CHEMICAL PATTERNS PART	
Lesson 4	Periodic table	120
UNIT 3	THE CHEMICAL INDUSTRY	
Lesson 5	Chemical industry 1 \& 2	124
PHYSICS		
UNIT 1	HANDLING PHYSICAL QUANTITIES	
Lesson 1	Measuring quantities \& precision and accuracy	130
UNIT 2 MECHANICS AND KINEMATICS		
Lesson 2	Mechanics and Kinematics 1	137
Lesson 3	Mechanics and Kinematics 2	141
UNIT 3 PROPERTIES OF MATTER		
Lesson 4	Properties of matter 1	146
Lesson 5	Properties of matter 2	150
UNIT 4 WAVES AND SOUND		
Lesson 6	Waves	153

SCIENTIFIC ENGLISH

MATHEMATICS

grade 10

GRADE 9 REVIEW

Task 1: Can you remember the keywords from grade 9?
Write the correct keyword for each definition from the box below.

ratio line segment			
hypotenusenet netical sign perpendicular lines angle			
volume			

	KEYWORD	MEANING	PICTURE or EXAMPLE
1		A plan of a shape that folds into a 3D solid shape.	
2		A line that has two end points.	
3		The symbol used to show a square root.	\int
4		The x and y coordinates that show a point on a graph.	$(5,2)$
5		The longest side in a right triangle.	

crade 9 REVIEW

	KEYWORD	MEANING	PICTURE or EXAMPLE
6		Shows the relationship of two or more values.	three blue to one yellow
7		Less than 90°.	
8		More than 90°.	
9		The amount of space that a 3D object takes. This is the length, width and height.	
10		These are lines that are at right angles to each other and make a 90° angle.	

GRADE 9 REVIEW

Task 2: MATCHING

Help us draw lines to match the words with their correct meaning or picture.
(1) parallel lines
a) $560,000=5.6 \times 10^{5}$
b) at the same time
(2) x-axis
(3) Scientific notation
c)

(4) quadratic equation
d) $x^{2}+4 x+4$
(5) simultaneous
(6) vertex (corner)
e)
f)

(7) edge

8 face
h)

9 rotation

10 base
i) 3^{2}
j)

CPADE 9 REVIEW

Task 3: MULTIPLE CHOICE!

Complete the sentences. Choose a, b, or c.
(1) The answer to a problem is a
a) question
b) problem
c) solution
(2) Scientific notation helps us write very ...
a) large
b) small
c) both a and b
(3) An obtuse angle is 90°.
a) less than
b) more than
c) equal to
(4) A line segment has ends.
a) 0
b) 1
c) 2
(5) The hypotenuse is the side in a right triangle .
a) adjacent
b) opposite
c) longest

Task 4: FOLDABLES

Make this foldable to help you organize your grade 9 review words.
Begin with 4 sheets of A4 paper.

1. Stack 4 sheets
of paper as shown.

2 Fold upward so all layers are the same distance apart.

(3) Crease well. Open and glue toghether as shown.

(4) Label each page with a word. Then write the meaning or draw a picture.

SET THEORY AND NUMBERS

KEYWORDS:	$\underset{\text { \{et }}{\text { \{ }}$	ϵ element	U	\cap intersection	\varnothing or $\}$ null/empty set	\subset subset

A set is a group of things collected together. The members or elements are listed in brackets.\{ ... \}.

The elements \in of $\operatorname{Set} A$ are $\{0,2,4,6,8,10\}$. All the elements in both Set A and Set B are the union of A and B. This is written $A \cup B=\{0,2,4,6,8,10,12,20\}$.

The intersection is the set of the elements in Set A that
 are also in Set B. This is written $A \cap B=\{0,4,8\}$.

> The union of Set A and Set C is called a null or empty set because they no elements in common. It is written \varnothing.

Set D is called a subset, because it is completely contained in another set.

SET THEORY AND NUMBERS

Task 1:

Draw lines to match the symbol with its term:

\cap	element
$\boldsymbol{\epsilon}$	union
\cup	set
\varnothing or $\}$	intersection
$\{\}$,	subset
$\subset C$	null/empty

Task 2:

Complete the sentences using the keywords from the box below.
subset null/empty set intersection union element
(1) A is a group of things collected together.

(2) The things in a set are called members.
(3) When we list all the members of two sets, this is the \qquad of the sets.
(4) When we find common elements in two sets, this is the \qquad of the sets.
(5) When there is no element that belongs in a set, this is called the or set.
6. A small set contained inside of another, larger set is called a \qquad

SEI THEORY AND NUMBERS

TODAY'S MATHEMATICS KEYWORDS

Complete the table. Match the keywords listed below with either the meaning, or picture/example. Fill in all blanks in all columns: keywords, meaning, picture or example.
set
element union
intersection
null/empty set

KEYWORD	MEANING	PICTURE or EXAMPLE
	A group of things collected together.	
		A B B

SET THEORY AND NUMBERS

KEYWORD	MEANING	PICTURE or EXAMPLE
The elements of one set are joined with the elements of another.		

SEIS OF REAL NUMBERS

Integers are a subset of rational numbers. All rational numbers can be written as one integer over another. Rational numbers are a subset of real numbers. Real numbers are all numbers that are rational or irrational.

Irrational numbers are numbers that cannot be written as a simple fraction. The decimal goes on forever without repeating.
For example $\pi(\mathrm{pi})$ is an irrational number.

SEIS OF REAL NUMBERS

Task 1:

Draw lines to match the symbol with its term.

Q^{\prime}	real
R	integer
N	
Z irrational	
Q	rational

Task 2:
Draw lines to match the following.
(1) Natural numbers
a) are any numbers that we can make by dividing two integers.
(2) Integers
b) have decimals that go on forever.

(3) Rational numbers
c) can be positive, negative, or zero, but not decimals.
(4) Irrational numbers
d) are numbers we count with.

Task 3:
Help Reem choose the correct answer. Is it a, b, or c ?
(1) A/an number can't be negative.
a) natural
b) rational
c) irrational
(2) $\mathrm{Pi}(\pi)$ is $\mathrm{a}(\mathrm{n})$
a) natural number
b) irrational number
c) integer
(3) is a rational number but not an integer.
a) -3
b) $3 \frac{1}{2}$
c) 3
(4) 100 is not $a(n)$
a) natural number
b) irrational number
c) integer

SEIS OF REAL NUMBERS

Task 4:

Work in pairs. Use these jumbled letters to make a question. Then answer the question.

Answer:

Task 5: LET'S TALK!

Work in pairs. Ask and answer these questions about sets of numbers.

What is a rational number?

Can integers and natural numbers be negative?

What is an irrational number? Give me an example.

It's a number....

Integers

It's a number. For example...

SEIS OF REAL NUMBERS

Task 6: PUZZLE TIME!

Work in teams. Help Reem and Mariam complete the crossword.

Across

1) You can't write an irrational number as a simple
2) This is an irrational number.
3) An integer can be negative, but it can't be a fraction or a \qquad

D 2) Any numbers we make by dividing integers are \qquad numbers.
3) Natural numbers start here!

SEIS OF REAL NUMBERS

Directions for Dominoes Game

(1) Cut on the dashed lines. Do not cut on the solid blue lines.
(2) Place all dominoes face down on a desk and mix them up.
(3) Share all the dominoes, so each player has an equal amount.
(4) To start the game, place a domino face up.

(5) The first player tries to match one end of the domino on the desk.
6) If he/she cannot match either end say 'Pass' and go to the next player.
(7) Play continues until all the dominoes are used.

SEIS OF REAL NUMBERS

SCIENIIFIC NOTATION

KEYWORDS:	index scientific notation	exponer surd	base conjugate

Today, we are going to learn about powers and bases. We will also learn about scientific notation, surds and conjugate. Who can tell me about the index number, exponents and the base?

I can, Dr. Hassan.
The index number shows you how many times the base is used as a factor.
It is written as a small number to the right above the base number.

In this example: $8^{3}=8 \times 8 \times 8=512$
Another name for index is exponent or power.
The base is the number used as a factor. In $8^{3}, 8$ is the base.

That's right Khalid!
Mohammed, can you tell me what scientific notation is?
Yes Sir! Our book says that scientific notation is very useful when we write very large numbers.
This is done with positive powers of 10. $\frac{80.000 .000 .000}{10 \text { umins right }}=8 \times 10^{10}$
We also use scientific notation to write very small numbers.
This is done with negative powers of ten. $00000003=3 \times 10^{-7}$

SCIENTIFIC NOTATION

surd

conjugate

$3 x+1$
$3 x-1$

The conjugate is where you change the sign in the middle of two terms like this:

$$
2 x+4 \longrightarrow 2 x-4
$$

A surd is an irrational number which has no exact value.

Task 1:

Draw lines to match the words with their correct meaning or picture.
(1) exponent
a) $560,000=5.6 \times 10^{5}$
(2) surd
(3) scientific notation
(4) conjugate
(5) base
b) Also known as index or power
c)

d) $2 x+4 x \rightarrow 2 x-4 x$
e) $? \rightarrow 6^{2}$

SGIENTIFIG NOTAHION

Task 2:
Complete the sentences using the keywords from the box below. conjugate exponent base index surd power scientific notation

Task 3: COMIC TIME!
Read the comic strip below

WHEN YOU ARE DOING SCIENTIFIC NOTATION WITH A POSITIVE EXPONENT AS SHOWN IN THE PROBLEM ON THE BOARD BELOW, YOU MOVE THE DECIMAL 6 SPACES TO THE RIGHT.
2.3 MULTIPLIED BY 10 WITH THE EXPONENT AS 6. ANSWER:2,300,000.

SO, YOU MOVE THE DECIMAL 6 SPACES TO THE RIGHT WITH A POSITIVE EXPONENT. WHAT DO YOU DO WITH A NEGATIVE EXPONENT?

WITH A NEGATIVE EXPONENT, YOU MOVE THE DECIMAL SPACE TO THE LEFT.
2.3 MULTIPLIED BY 10 WITH THE EXPONENT AS
-6.ANSWER:0.0000023

SCIENTIFIC NOTATION

Now, using any of the keywords in today's lesson create your own comic strip.

\square

SCIENTIFIG NOTATION

TODAY'S MATHEMATICS KEYWORDS

Complete the table. Match the keywords listed below with either the meaning, or picture/example. Fill in all blanks in all columns: keywords, meaning, picture or example
index exponent power base scientific notation surd conjugate

KEYWORD	MEANING	PICTURE or EXAMPLE
	Changing the sign in the middle of two terms.	
	Used to write very big or small numbers.	
Also known as index or		
power.		

SGIENTIFIG NOTATION

KEYWORD	MEANING	PICTURE or EXAMPLE
		$\sqrt{2}$
	A number that shows how many times to use the base number as a factor.	

RAIIO AND PROPORIION

Hello class. Today, we are going to talk about ratio and proportion.

compound interest
Investing 1,000 QR at 10\% interest per year

Year 1: $1,000+100=1,100$
Year 3: 1,210 + $121=1,331$
Year 5: $1,464.10+146.41=1,610.51$

A ratio shows the relative sizes of two or more values.
In the example on the board, we would say, 'There are 3 blue squares to 1 yellow square.'
Ratios can also be written as fractions (to show the relationship of a part to the whole), or as decimals or percents. What is a proportion?

Percentage means parts per hundred. Often when you invest money, you will earn an extra amount each year as interest on the principal. The interest is figured as a percentage of the amount you invested.

A proportion is simply two ratios that are equal to each other. Proportions are usually used in Algebra to solve for some missing information, which is shown as \times on the board.

If you leave your money in the bank year after year, you may earn compound interest, which is the same as earning interest on both your principal and the added interest per year. Look on the board for how 1000QR with 10% compound interest grows in 5 years!

RATIO AND PROPORTION

Fill in the blanks with the words from the box below.
(1) We can write a \qquad in different ways: $1: 3, \frac{1}{4}, 0.25$, or 25%. (one to three, one fourth, twenty-five hundredths, or twenty-five percent)
(2) We can solve problems for missing information in algebra with \qquad showing two equivalent ratios.
(3) The amount added each year to both the principal and any interest you have earned is called \qquad

4 \qquad means parts per hundred. It is the way interest is calculated for loans or investments.

Task 2:
Unscramble each of the clue words.

S I R T N E T E

P E E G A E TCRN

Take the letters that appear in \square boxes and unscramble them for the final message.

RATIO AND PROPORIHION

Task 3: COMIC TIME!
(1) Read the comic strip.
Complete the comic strip.
\square

RATIO AND PROPORTION

TODAY'S MATHEMATICS KEYWORDS

Look at the keywords in the box below. Write each word in the box below. Next to the word write its meaning and in the last box draw a picture or provide an example.
ratio proportion compound interest percentage

KEYWORD	MEANING	PICTURE or EXAMPLE

Read the conversation and help Khalid and Jassim write the answers.
Remember, in a Venn diagram, the elements (members) are the things in the sets. The union is everything in the sets but the intersection only has the things that are in both sets.
Now, look at the smartboard below and label (1), (2) (3) and (4)?

Choose the right letter for the sentences below:
(1) The elements (members) of the union of Set A and Set B :
a) x and y
b) y
c) x, y and z
(2) The elements (members) of the intersection of Set A and Set B :

a) x and y
b) y
c) x, y and z
(3) The elements (members) of Set A:
a) x and y
b) y
c) x, y and z

REVIEW

That's right! And when the exponent is 2 , it's 'squared'. So, 10 to the power 2 is 10 squared!

And the exponent can be positive or negative. For example, in 10^{-2}, the exponent is negative.

Draw lines to complete the sentences.
(1) When the base is 2 and the exponent is 2 ,
(2) When the base is 2 and the power is -2 ,
(3) When the base is 2 and the power is 3 ,

a) it's $2 \times 2 \times 2$.
b) it is 2 squared.
c) there is a negative exponent.

REVIEW

Now, look at my board and fill in the blanks below with a word or number from the box.
exponent/power/index two (2) ten (10) 100 base

Ten is the \qquad Two is the

This is to the power \qquad The answer is \qquad

An index is the same as a power and an exponent.

Six to the power two is six squared; that's 6×6.
(3) 8^{2} is eight to the power two, or eight squared.

Number is FALSE, because \qquad

Now, let's revise sets of numbers. What are rational numbers, Moza?

Irrational numbers cannot be simple fractions. The decimal goes on forever, like pi

REVIEW

Rational numbers are numbers we can make when we divide one integer by another. They can be whole numbers, fractions or decimals, positive or negative!

Integers are positive or negative too, but not fractions or decimals. Irrational numbers have decimals that go on forever. They can't be simple fractions. Natural numbers are the numbers we count with, starting at one.

ONE of these sentences is FALSE. Which one? Why?

(1) Zero, one, two and three are all natural numbers.

Number is FALSE, because
 Ask and answer these questions about the things we have revised.

What are 'elements'?

What does an exponent tell us?

What's the difference between integers and natural numbers?

They are....

It tells us how many times...

Integers can be... but natural numbers can't.

THE ORDER OF OPERATIONS

| KEYWORDS: | order of operationsbrackets
 additionmultiplication
 subtraction | division |
| :---: | :---: | :---: | :---: |

Mrs Hessa is teaching a lesson about the order of operations.
Read and listen to the lesson. Then do the activities.

THE ORDER OF OPERATIONS Brackets
 Other Things
 ()
 Division Multiplication Addition

Subtraction

The order of operations tells us what order we are supposed to do things in a math problem.

There are many operations. How do we know where to start? Shall I start at the left and go to the right?
Or go from right to left?

HHE ORDER OF OPERATIONS

A common phrase to remember the order is BODMAS! Bored Of Doing Math At School!

Task 1:

Can you fill in the blanks? Use the words provided.
operations multiplication subtraction brackets division addition
(1) When we arrange an equation with many number operations, we must always begin by removing the \qquad ...
(2) After the brackets, it is important to solve all numbers.
(3) When we have completed division, we must complete any \qquad numbers.
(4) To help find the next step, we must use \qquad and add the numbers in the equation.
(5) Lastly, we get rid of the final operation which is \qquad and do this to get the answer to the whole equation.
(6) We must ensure that we do all the number \qquad in this order.

Task 2:

Can you match the words with the operations?
(1) addition
a) $7-5=$
(2) multiplication
b) (3×4)
(3) subtraction
c) $8 \div 4=$
(3) division
d) $5+3=$
(5) brackets
e) $6 \times 2=$

THE ORDER OF OPERAIIONS

Task 2: COMIC TIME
THE ORDER OF OPERATIONS

Complete the comic strip.

THE ORDER OF OPERATIONS

Now, create your OWN comic strip about the order of operations using the template below.

PRODUGT OF POLYNOMIALS

KEYWORDS:	polynomials difference of two squares	highest common factor (HCF) factorizing

Dr Hassan is teaching a lesson about polynomials.
Read and listen to the lesson. Then do the activities.

POLYNOMIALS

Dr Hassan, what is a polynomial?

Well Jassim, a polynomial can have many terms in it. Each term is separated by an operation.

The difference of two squares is equal to the sum multiplied by the difference. For example: $a^{2}-b^{2}=(a+b)(a-b)$

Khalid, what do you think the highest common factor is?

PRODUGT OF POLYNOMIALS

Well Dr Hassan, I think the HCF must be the largest common factor among polynomials.

Yes, that is true Khalid. Well done. Factorizing is finding the factors that will divide into a polynomial.

Task 1:

Can you fill in the blanks? Use the words in the box below.
difference of two squares factoring polynomial
(1) A have many terms.
(2) is finding the factors to multiply to get an expression.
(3) The \qquad is the sum of two squares multiplied by their difference.

Task 2:

Can you match the words with the operations?
(1) difference of two squares
a) $\longleftrightarrow x^{2}+5 x+6$
(2) polynomial
b) The largest number that will divide exactly into two or more numbers.
(3) factorzing
c) An expression that can have many terms.
(3) area
(5) highest common factor
d) The sum of 2 squares multiplied by their difference.
e) Finding the factors to multiply to get an expression.

PRODUGT OF POLYNOMIALS

TODAY'S MATHEMATICS KEYWORDS

Look at the keywords in the box below. Write each word in the box below. Next to the word write its meaning and in the last box draw a picture or provide an example.

$$
\begin{aligned}
& \text { polynomials highest common factor } \\
& \text { difference of two squares }
\end{aligned}
$$

KEYWORD	MEANING	PICTURE or EXAMPLE

PRODUGI OF POLYNOMIALS

KEYWORD	MEANING	PICTURE or EXAMPLE

RIELITIONS AND FUNGTIONS

KEYWORDS: formula function domain range graph directly proportional function: graph of $y=x^{2}$

RELATIONS AND FUNGTIONS

> I see! What does directly proportional mean, Sir?

Directly proportional is when two variables, x and y, increase or decrease together in the same ratio. For example, if the values for x are 1,2 and 3 and the values for y are 10, 20 and 30, we can see that they are directly proportional. The ratio is 1:10.

Task 1:

Draw lines to make correct sentences:
(1) The domain is
a) all the numbers coming out of the function.

(2) A formula is
b) a maths rule to solve problems.
(3) The range is
c) a chart showing the relationship between sets of numbers.
(4) A graph is
d) a fixed relationship between two sets of numbers.
(5) A function is
e) all the numbers going into the function.

RELATIONS AND FUNGTIONS

Task 2:

Work in pairs. Choose the correct word to complete the sentences below.
(1) When we want to show someone the relationship between two sets of numbers, we draw a
a) domain
b) range
c) graph
(2) The domain is the \qquad the function.
a) input into
b) output from
c) website of
(3) $\frac{1}{2}$ base \times height is a to find the area of a triangle.
a) formula
b) graph
c) domain
(4) On the graph on page 42 , the \qquad is on the vertical axis (going up).

a) domain
b) formula
c) range

Task 3:

Work in pairs. One of these sentences is FALSE. Which one is it? Explain why.
(1) A graph of a function needs a domain and a range.

TRUE
FALSE
(2) x^{2} is a domain.

TRUE
FALSE
(3) 1,2,3 (range) and 30,60,90 (domain) are directly proportional.

TRUE

Number is FALSE, because

Task 4:

Work in pairs: Ask and answer questions about FUNCTIONS and GRAPHS.

What is a graph?

What is a formula?

What is the difference between the range and the domain?

A graph is.

A formula is..

The range is... but the domain is....

RHLATIONS AND FUNGTIONS

Task 5: PUZZLE TIME!

Work in pairs. Complete the crossword.

Across

1) We use a to solve problems. For example, the area of a triangle is $\frac{1}{2}$ base \times height.
2) This is all the numbers that go into the function.
3) You can draw a \qquad to show the relationships between numbers.

D 2) Values are directly proportional when they increase or decrease and the ..- stays the same.
3) These are the results of the function; the numbers that come out.

RELATIONS AND FUNGTIONS

TODAY'S MATHEMATICS KEYWORDS

Fill in all blanks in all columns: keywords, meaning, picture or example for today's keywords.

KEYWORD	MEANING	PICTURE or EXAMPLE

RELATIONS AND FUNGTIONS

KEYWORD	MEANING	PICTURE or EXAMPLE

PARALLEL AND PERPENDICULAR LINES

KEYWORDS: parallel perpendicular graphically algebraically elimination

(1) parallel lines

(2) perpendicular lines

We can solve things graphically, that is with a graph, or algebraically, that's with letters and numbers.

Dr Hassan is giving a lesson on parrallel and perpendicular lines.
Read and listen to the lesson, then do the activities that follow.
On graph 1, there are two parallel lines. They are the same distance apart all the time. They have the same gradient. On graph 2, there are perpendicular lines. Do you know what they are, Mohammed?

Yes, Sir. Perpendicular lines are lines at right angles to each other. That's 90°.

Yes! The angle where they meet or cross is 90°. Our book says, we can solve equations graphically or algebraically (al-ge-bra-ik-lee). Can you explain that please, Sir?

Certainly, Khalid. We solve equations graphically by drawing them. We put them on a graph. We solve equations algebraically when we use algebra. We write down numbers and letters. When we solve equations algebraically, we can eliminate variables (like x and y). That means we cancel them. We delete them. For example, if there is $+2 y$ and $-2 y$, we can eliminate them. This is elimination.

PARALLEL AND PERPENDICULAR LINES

Task 1:

ONE of the following sentences is FALSE. Which one is it? Explain why.
(1) Both parallel lines and perpendicular lines are straight .

TRUE
(2) Parallel lines have different gradients.

TRUE

Number \qquad is FALSE because

Task 2:

Now, let's draw lines to label these.
(1) This is solved graphically.
(2) These lines are parallel.
b) $\quad / 7$

(3) These lines are perpendicular.
c) $\quad \begin{aligned} 6 x^{2}-2 y^{2} & =18 \\ 7 x^{2} & =28 \\ x^{2} & =4 \\ x & =2\end{aligned}$
(4) This is solved algebraically.
d)

(5) These are parallel and perpendicular lines.
e)

PARALLEL AND PERPENDIGULAR LINES

Task 3:

Work in pairs: Choose the correct words to complete the sentences below.
(1) Parallel lines
a) make a 90° angle
b) make a 60° angle
c) never meet
(2) Perpendicular lines

a) make a 90° angle
b) make a 60° angle
c) never meet
(3) We draw lines to solve things
a) algebraically
b) graphically
c) mentally
(4) We use letters and numbers to solve things \qquad
a) algebraically
b) graphically
c) mentally
(5) When we eliminate something,
a) it goes away
b) it gets bigger
c) it gets smaller
6. We use elimination when we solve equations \qquad
a) algebraically
b) graphically
c) mentally

Task 4:

Work in pairs. Ask and answer these questions about straight lines on graphs:

What are parallel lines? What are perpendicular lines?

What is elimination?

What's the difference between solving equations graphically and solving them algebraically?

Parallel lines are.... Perpendicular lines are....

Elimination is when we...

Graphically is ... and algebraically is ..

PARALLEL AND PERPENDICULAR LINES

Task 5:

Use the words in the box below.
gradient eliminate ninety algebraically graphically

Across

4) We solve equations them.
5) We solve equations

D

- numbers and letters.
w
n

2) When we
something, we cancel it. We delete it.
3) When perpendicular lines meet,they make a angle.
4) Parallel lines go up and down at the same angle. They have the same \qquad degree .

PARALLEL AND PERPENDICULAR LINES

Task 6: ACTIVITY TIME!

Use any keyword to draw your own cartoon.
parallel perpendicular graphically algebraically elimination

Example:

perpendicular

PARALLEL AND PERPENDIGULAR LINES

RELATIONS BETWEEN ANGLES

Today, we're studying different kinds of angles. Supplementary angles are two angles that add up to 180°. Complementary angles are two angles that add up to 90°. Look at the board. Can you tell me about corresponding angles, please?

Yes, Sir. When a line crosses two other lines, like on the board, corresponding angles are angles in matching positions; the same place on the other line.

I know that alternate interior angles are the angles on opposite sides of the line that crosses, and inside two other lines, like angles C and F on the board. They are inside lines X and Y; that means they are interior. But they are on opposite sides of the line that crosses. That means they are alternate.

RIELATONS BETWEEN ANGLES

That's right, Khalid! Vertically opposite angles are angles opposite each other when two lines cross, like the ones on the board.

That's excellent Sir! Now we, have learned a lot about the different kinds of angles and many new words.

Task 1:
Draw lines to complete the sentences.
a) are in the same place on
different lines. different lines.
(2) Corresponding angles
b) add up to 180°.
(3) Complementary angles
(4) Vertically opposite angles
c) are opposite to each other when two lines cross.
d) are inside 2 lines, on opposite sides of the line that crosses.
(5) Alternate interior angles
e) add up to 90°.

Task 2:

Work in pairs. Label these angles.

RELATIONS BETWEEN ANGLES

Task 3:

Work in pairs. ONE of these sentences is FALSE. Which one is it? Explain why.
(1) When two lines cross, the angles opposite each other are vertically opposite angles.
(2) When we add supplementary angles, they make 90°.
(3) Alternate interior angles are on opposite sides of the line that crosses.

Number is FALSE because

Task 4:

Work in pairs. Ask and answer questions about different kinds of angles.

> What are supplementary angles?

What are corresponding angles?

What's the difference between complementary angles and supplementary angles?

They are angles that...

They are angles that...

Complementary angles ... but supplementary angles are..

RHLATIONS BETWEEN ANGLES

Task 5: PUZZLE TIME!

Now, work in teams. Complete the CROSSWORD below.

Across

4) Angles inside the two lines are angles.

5) 180°.
6) \qquad angles are in the same place on different lines.
7) \qquad angles make 90°.

| KEYWORDS: | interior angleexterior angle
 equilateral
 isosceles | |
| :---: | :---: | :---: | :---: |

Today, Mariam, Reem and Moza are reviewing unit 5 from their math textbook. Read and listen, then do the activities.

Errrrr.... 30 and 150 is.... 180°, Mrs Hessa!

Excellent, Moza. That's the bell. Your homework today is \qquad

Task 1:

Choose the correct answer.

(1) Two triangles that are exactly the same are
a) interior
b) exterior
c) congruent
d) isosceles
(2) An angle on the outside of a triangle is a(n)....................... angle.
a) interior
b) exterior
c) acute
d) congruent
(3) A triangle with the same sides and angles is a(n) \qquad triangle.
a) isosceles
b) right
c) equilateral
d) interior
(4)

A triangle with two sides and angles the same is $a(n)$ triangle.
a) isosceles
b) right
c) equilateral
d) interior

Lars Reviaw

Task 2: MATCHING
Help Moza and Reem match the triangles to their names and definition.

(1)

All the and angles are the same.
(2)

One of the angles is......................
(3)

the same. So are
the angles.

Task 3: LABEL THE DIAGRAM

Help me label this diagram with the words in the box and answer the question:

Work in pairs. Ask and answer these questions about triangles.
\qquad
What's the difference between an equilateral triangle and an isosceles triangle?

An equilateral is... but an isosceles is....

Use the jumbled words to make a question. Then answer the question.

$G A E P$

59?

Answer: \qquad

| KEYWORDS: cube volume | area
 width | 1D
 height | 3D | length |
| :--- | :--- | :--- | :--- | :--- | :--- |

Today, we are studying area and volume. Length, width and height are dimensions. Length is the long distance from end to end and width is from side to side. Height is the distance from top to bottom. An object with length, width and height is three-dimensional (3D). A cube is a 3D object with all the dimensions the same and all its angles 90°. Can you tell me about area and volume please, Mariam?

Yes, I do! As you can see on the board, a line is 1D and it only has length.

AREA AND VOLUME

Task 1:

Work in pairs. ONE of these sentences is FALSE. Which one is it?
(1) A cube has length, width and height and is a 3D object.

TRUE
FALSE.
(2) 2D objects only have length and width.

TRUE
(3) A square has volume.

TRUE

FALSE.
FALSE.

Number is FALSE, because

Task 2:

Draw lines to match each word with its definition.
(1) volume
a) The distance from top to bottom.
(2) area
b) The distance from end to end.
(3) width
c) The space in a 3D object.
(4) length
d) The size of a surface.

(5) height
e) The distance from side to side.

Task 3:

Choose the correct answer. Is it a, b, or c ?
(1) A line is
a) $3 D$
b) $2 D$
c) $1 D$
(2) A square is
a) $1 D$
b) $2 D$
c) $3 D$
(3) Height, length and width are all
a) shapes
b) dimensions
c) areas

(4) A flat surface is
a) $1 D$
b) $2 D$
c) $3 D$

AREA AND VOLUME

Use these jumbled words to make a sentence. Then, follow the directions.

(1) What shape is this? \qquad
(2) Does it have volume? \qquad
\square

Task 5:
Work in pairs. Ask and answer these questions.

What is a cube?

What's the difference between 2D shapes and 3D objects?

2D shapes..... but 3D shapes....

What's the difference between area and volume?

Area is..... but volume is...

Easy! It's \qquad
\qquad

3 Why or why not? \qquad .

AREA AND VOLUME

Task 6: PUZZLE TIME!

Help Reem and Mariam complete the crossword.

Across

Is it difficult?

1) Volume is the inside a 3D object.
2) This is a 3D object with all the sides the same length and all the angles 90°.

I don't think so. We know all the words.
4) A $1 D$ shape is a \qquad
5) The dimension that goes from top to bottom is

1) This is a 2D shape with all the sides and angles the same!
2) 2 D shapes are

VOLUME AND SURFACE AREA

| KEYWORDS: cube sphere cylinder cone pyramid face | |
| :---: | :---: | :---: | :---: | :---: |
| edge vertex net | three-dimensional (3D) |

Dr Hassan is teaching a lesson about 3D shapes.
Read and listen to the lesson. Then do the activities.

Yes, Dr Hassan! We can measure the length, width and height of 3D shapes. We need to know three more words to describe these shapes. A vertex is a corner. An edge is where two surfaces meet, and a face is an individual surface.

That's correct, Mohammed. A cube has six congruent square faces, 8 vertices and 12 edges. The base of a square pyramid is a square, and the other 4 faces are triangles. The triangles meet at the vertex. A
 cylinder has two edges, two circular faces and one curved surface.

VOLUME AND SURFAGE AREA

Task 1:
Draw lines to match the words with their correct meanings:
(1) $3 D$
a) A corner.
(2) vertex
b) An individual surface.
(3) edge
c) Three-dimensional.

(4) face
d) A pattern you can cut and fold to make a model of a 3D shape.
(5) net
e) Where two surfaces meet.

VOLUME AND SURFACE AREA

Task 2: PAIR WORK!

Label each shape using the words from the box below.

cylinder sphere cube pyramid cone

Task 3:
Fill in the blanks using words from the box.
net
vertex
faces
3D
edges
(1) A cube has 6 square and 12
(2) You can use a to make a model of a 3D shape.

(3) The corner where 3 edges meet is a
4. If you can measure length, width and height the shape is

Task 4: LET'S TALK!

Work in pairs.
Ask and answer the questions about the words we have studied today.

What shape has no edges or vertices?

A ... has 6 square faces. What shape has triangles that meet at a vertex?

A ... has two flat circular faces and one curved surface.
A... has no edges or vertices. What shape has 6 square faces?

A ... has triangles that meet at a vertex. What shape has two flat circular faces and one curved surface?

VOLUME AND SURFAGE AREA

Task 5: PUZZLE TIME!

Work in your groups.

Help Mohammed and Khalid complete the Double Puzzle about 3D Shapes.

We can solve this together!
First, let's unscramble each of the clue words.

Then, we'll copy all the letters in the numbered cells to other cells with the same number.

4

(5)

$$
H E P S E R
$$

Task 6: CHALLENGE!
Can you complete Mohammed's drawing of the NET of a square-based pyramid?

VOLUME AND SURFAGE AREA

TODAY'S MATHEMATICS KEYWORDS

Look at the keywords on page 67. Write each word in the box below. Next to the word, write its meaning and in the last box draw a picture or provide an example.

The first one is done for you!

KEYWORD	MEANING	PICTURE or EXAMPLE
three-dimensional		
(3D)	A shape that can be measured with length, width and height.	

VOLUME AND SURFAGE AREA

KEYWORD	MEANING	PICTURE or EXAMPLE

QUIZ

(1) The drawing on the board is $a(n)$
a) Venn diagram
b) intersection
c) union
(2) y is the of Set A and Set B.
a) Venn diagram
b) intersection
c) union
(3) $x y z$ is the of Set A and Set B.
a) Venn diagram
b) intersection
c) union

QUIF

Look at my whiteboard. Draw lines to make correct sentences:
(1) The exponent
a) is nine.

b) is two.
(2) The answer
(3) The base number
c) is three.

Choose the correct answer. Is it a, b, or c ?
(1) numbers start at one. They can't be negative.
a) Natural
b) Rational
c) Irrational
(2) can be whole numbers, fractions or decimals, positive or negative.
a) Natural
b) Rational
c) Irrational
(3) is not an integer.
a) Zero
b) -1
c) $\frac{1}{2}$

4 numbers cannot be simple fractions. The decimal goes on forever.
a) Natural
b) Rational
c) Irrational

QUIZ

Do the crossword about these angles.

Across
3) p and q are angles.
4) Angles p and q add up to
5) c and f are alternate
angles.

D
0
w
n

1) m and n are
angles.
2) j and k are \qquad angles.
3) a and e are \qquad angles. degrees.
\qquad

- \qquad angles.

The space inside a 3D object.

A three-dimensional figure with a curved surface and a circular base.

G L 100 S $\operatorname{S}: A: R: Y$

A

addition
(pg. 35)
Joining of addends and like terms.
algebra/ algebraically $5 x+3=y$ (pg. 49)
Equations or expressions using numbers, letters and operation signs.
alternate interior angles
(pg 55)

Angles on opposite sides of a transversal and inside two parallel lines.
angle
(pg. 55)

The amount of turn between two straight lines that have a common end point (the vertex).
area
(pg. 63)

The measure in square units, of the inside of a 2D figure.
base
(pg. 21)
The number used as a factor. In $4^{3}, 4$ is the base
brackets
(pg. 35)
Symbols used in pairs to group things together.

C

complementary angles
(pg. 55)

$\angle 1$ and $\angle 2$ are complementary angles.
Two angles that add to 90°.
compound interest
(pg. 27)
A special interest rate with exponential growth.

G L O O S S AA R Y

cone

(pg. 67)
A three-dimensional figure with a curved surface and a circular base.

congruent

(pg. 59)
Same size, same shape, same angle.
conjugate $2 x+4 \longrightarrow 2 x-4$
(pg. 21)
The process of changing the sign in the middle of two terms.
corresponding angles
(pg. 55)

Angles in the same position on another line.
cube
(pg 63)
A three-dimensional shape with 6 equal square faces.

cylinder

(pg. 67)
A three-dimensional shape with two flat circular faces and one curved surface.

D

difference of two squares. (pg 39)
$a^{2}-b^{2}=(a+b)(a-b)$
The difference of two squares is equal to the sum multiplied by the difference.
directly proportional.
(pg. 43)
This is when two variables x and y increase or decrease together in the same ratio.
division
(pg. 35)
To split into equal parts.
domain
(pg. 43)
The set of x-coordinates in a relationship.

edge
(pg.67)
The line where two surfaces meet.

element

(pg. 10)
The members of a set are its elements. They are listed in brackets.
Set $A=\{0,2,4,6, \ldots\}$
eliminate/elimination
(pg. 49)
Cancel or delete.
empty set (pg.10)
A set with no elements.
equilateral triangle (pg. 59)
A triangle with 3 equal angles $\left(60^{\circ}\right)$ and 3 equal sides.
exponent $4^{3}=4 \times 4 \times 4$ (pg. 21)
Tells us how many times to use the base as a factor.
In $4{ }^{3}$, the exponent is 3.

face
(pg.67)

A flat surface of a three-dimensional shape.

factorizing

(pg. 37)
Finding the factor to multiply to get an expression.

formula

(pg. 43)
A formula is a math rule to solve problems. For example the formula for the area of a triangle is $\frac{1}{2}$ base x height.
function $3 \longrightarrow{ }^{\mathrm{X} 2} \longrightarrow 6$
(pg. 43)
Is like a machine, it relates the input to the output in a specific way.
exterior angle (pg. 59)
The angle outside of a shape.

E

To draw or plot points as ordered pairs.
(x, y) on a coordinate plane or grid.
graphically
(pg. 46)
To plot all the points on a graph that satisfy an equation.

(pg. 63)
The vertical distance from top to bottom of a three-dimensional object.
highest common factor (pg. 39)
$12=1,2,3,4,6,12$
$18=1,2,3,6,9,18$.
$H C F=6$
The largest number that divides exactly into two or more numbers.

index

$$
3^{2}=3 \times 3
$$

(pg. 21)
Tells us how many times to use the base as a factor.
Same as exponent or power.
integer-2, -1, 0 1, 2.....
(pg. 14)
The set of whole numbers that are negative as well as positive, including zero(0).
interior angle (pg. 59)
The angle inside a shape.

The elements that are found in more than one set.
irrational number
(pg. 14)
Numbers that cannot be expressed as terminating or repeating decimals. The number goes on forever.
isosceles triangle (pg. 59)
A triangle with 2 sides of the same length.

N
natural numbers
(pg. 14)
$N=1,2,3$
A counting number.
net
(pg. 67)

A pattern that you can fold to make a model of a solid shape.
null
(pg. 10)
A set with no elements.
order of operations (pg. 35)
The rules to follow when more than one operation is used in a numerical expression.
parallel (pg. 49)

Lines in the same plane that do not intersect.
They always remain the same distance apart.

percentage

(pg.24)
Out of 100 parts.
perpendicular (pg.49)
Lines that intersect to form right angles.
polynomial $5 x^{2}-3 x+5 y^{3}-3$
(pg. 36)
An expression with one or more terms.
power

$$
6^{2}=6 \times 6
$$

(pg. 21)
Tells us how many times to use the base as a factor.

proportion

(pg. 27)

An equation that shows that two ratios are equivalent.

pyramid

 (pg. 67)

A three-dimensional object where the base is a polygon and the sides are triangles that meet at the top.

R

range
(pg. 43)
The difference between the greatest and least numbers in a data set.

ratio 3:1

(pg. 27)
Shows the relative sizes of two or more values.
rational number Q. $\begin{gathered}1.5=\frac{3}{2}>\frac{\text { Ratio }}{\text { Rational }}\end{gathered}$ (pg. 14)
Any number that can be made by dividing one integer by another.
real number

(pg. 14)
All rational or irrational numbers.

set

$$
\{,\}
$$

(pg. 10)
A group of things collected together. The members or elements are listed in brackets.

U

(pg. 21)
$4.87 \times 10^{6}=4,870,000$
A way of writing very large or very small numbers.
sphere
(pg. 67)
A three - dimensional shape with no edges or vertices (corners). All points on the surface are the same distance from the center.
union
(pg. 10)
Elements that are in both sets.
Set $A=\{1,2,3,4,5\}$
Set $B=\{1,3,5$,
The Union of Set A and B is $\{1,3,5\}$
This is written as $A \cup B$.
subset
(pg. 10)

A set contained in another set.
supplementary angles
(pg. 55)

Two angles that add up to 180°
surd $\sqrt{3}$
(pg. 21)
An irrational number with no exact value.
vertically opposite angles (pg. 55)

Angles opposite each other where two lines intersect.

(1)
width

(pg.63)
The distance from side to side of a 2D or 3D shape.

8

SCIENTIFIC ENGLISH SCIENCE BIOLOGY

Dr. Hassan is teaching Khalid about animal and plant cells. Read and listen to the lesson, then do the activities that follow.

Animal cell

Please Sir, can you tell me what an organelle is? What does the nucleus of the cell do?

Yes, Khalid. Organelle means "little organ". They are the parts of a cell and each has a specific job. For example nucleus is the control centre. It controls what all the organelles do. Do you know anything about the cell membrane?

I know the cell membrane is a very thin wall that controls the movement of substances into and out of the cell.
But what are ri-bo-somes (ribosomes) and mit-o-chon-dri-a (mitochondria), Sir?

Dr. Hassan: The mitochondria make the energy in the cell. That is where aerobic respiration happens. Ribosomes make proteins. Every cell has ribosomes. The nucleus, mitochondria, cell membrane and ribosomes are all organelles.

Khalid: Are these organelles in plant cells or animal cells?
Dr. Hassan: Nucleus, mitochondria, cell membranes and ribosomes are in both plant cells and animal cells.

Khalid: Thank you very much, Sir. This is really helpful!

Task 1:

Match the following words with their meanings. Draw lines to connect them.
(1) The nucleus
a) controls what goes in and out of a cell.
(2) Ribosomes

b) make energy.

(3) An organelle
) make proteins.
(4) Mitochondria
 d) controls what happens in a cell.
(5) The cell membrane e) is a part of a cell that does a specific job.

Task 2:

ONE of these sentences is FALSE. Which one is it? Explain why.
(1) Ribosomes and mitochondria are both organelles.
(2) Ribosomes make energy.

TRUE
FALSE
(3) Both plant cells and animal cells have a cell membrane.

Number is FALSE, because良

Task 3:

Choose the correct words to complete the following sentences. Is it a, b or c ?
(1) respire(s).
a) Ribosomes
b) Mitochondria
c) The nucleus
(2) Cells have \qquad ribosome(s).
a) one
b) two
c) many
(3) You can find a cell membrane in a/an
cell. a) animal
b) plant
c) nucleus

4) There are in a plant cell.
a) ribosomes
b) mitochondria
c) Both a and b

Task 4:

Work in pairs. Ask and answer the following questions about animal and plant cells:

What are organelles? Name two.

Organelles are ...

What does the nucleus do?
The nucleus
What's the difference between ribosomes and mitochondria?

Ribosomes ... , and mitochondria ...

TWO KINDS
 OF çills

KEYWORDS:
prokaryotic cell eukaryotic cell membrane electron microscope ultracentrifuge

Today, Dr. Hassan is teaching Khalid and Mohammed about two kinds of cells.
Read and listen to the lesson, then do the activities that follow.

Yes, Sir! A Prokaryotic cell (pro-kar-ee-ot-ic) has no nucleus. It is small and simple.
A Eukaryotic cell (you-kar-ee-ot-ic) has a nucleus and many different parts with membranes around them.
A membrane is a thin boundary around something or between things.

Eukaryotic cells are much bigger. Most living things, such as animals and plants, have eukaryotic cells.
Only bacteria have prokaryotic cells.

TWO KINDS OF CELLS

Dr. Masan: That's right! Well done! These cells are very tiny, so we need a special microscope to see them. An electron microscope is a microscope with a special kind of light from electrons that helps us see cells more clearly. Another very useful machine is a centrifuge. An ultracentrifuge spins things around very fast, so they separate into their parts.

Match the two columns. Draw lines.

Task 1:

(3) A prokaryotic cell
 c) spins substances to separate them.
(4) An ultracentrifuge
 d) lets us see cells more clearly.
(5) An electron microscope

Task 2:

Choose the correct words to complete the sentences. Is it a, b, or c ?
(1) We can find prokaryotic cells in
a) animals
b) plants
c) bacteria
(2) Eukaryotic cells are \qquad prokaryotic cells.
a) bigger than
b) as big as
c) smaller than
(3) cells are simple.
a) Eukaryotic
b) Prokaryotic
c) Both a and b
(4) An electron microscope
a) moves substances
b) has a special light
c) Both a and b

TWO KINDS Oß CヨLLS

Task 3:

Look at the diagrams below, use the diagrams at the beginning of the lesson to help you label them fully:

Task 4:

Work in pairs. Ask and answer the following questions about today's lesson.

What are the differences between prokaryotic cells and eukaryotic cells?

Eukaryotic cells have got... but prokaryotic cells...

It's.
What's a centrifuge?

What kind of cells do animals have?

That's easy! They have ...
nucleic acids KEYWORDS:
waxes
eins carbohydrates lipids triglyceride phospholipid monosaccharide disaccharide polysacchride amino acids

1. Carbohydrates

Carbohydrates are molecules made of sugar;
monosaccharides - a simple sugar
disaccharides - two monosaccharides such as sucrose
polysaccharides - three+ monosaccharides, a complex sugar molecule such as glycogen and starch

2. Lipids

Lipids are made of fatty acids and glycerol
triglycerides - three fatty acid molecules joined to one glycerol
phospholipids - two fatty acids attached to a glycerol molecule linked to a phosphate group
waxes - one long fatty acid chain joined to a long glycerol chain

3. Proteins are organic compounds made of a chain of amino acids and provide the cell structure and perform most of the biological activities.
4. Nucleic acids are large organic molecules that store and transfer information in the cell. The two major types are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic acids are made of nucleotides.

Today, our lesson is about the molecules of life, otherwise known as bio-molecules. Like the structure of a house (the foundation, framework, bricks and roof), living cells also consist of large complex molecules that form the building blocks of life.

So Mrs Hessa, what are these building blocks called?
Let's study the board. Details about these building blocks are given here.

What do the carbohydrates and lipids do?
Carbohydrates are a source of energy for living cells, while lipids store energy and are considered

BLOLOCIGALIV DMPORTANH WOL BGULES

Look at the keywords column in the table below (from this lesson). Rewrite each word. Next to the word, write its meaning.

KEYWORD	REWRITE WORD	MEANING
nucleic acids		
proteins		
carbohydrates		

BLOLOCHCALIY IMPORTANU MOLECULES

KEYWORD	REWRITE WORD	MEANING
triglyceride		
phospholipid		
disaccharide		
polysacchride		
amino acids		

Task 1:

Match the word with the suitable statement to make a complete sentence. Draw lines.

Task 2:

Choose the correct answer. Is it a, b, c or d ?
(1) Which group of words is associated with carbohydrates?

a) monosaccharide, disaccharide, polysaccharide
b) monosaccharide, cellulose, lipid
c) disaccharide, polysaccharide, steroid
d) polysachharide, amino acid, collagen
(2) A phospholipid molecule contains all of the following EXCEPT:
a) two fatty acids
b) three fatty acids
c) a phosphate group
d) glycerol
(3) What type of molecule is ribonucleic acid (RNA)?
a) a nucleic acid
b) a lipid
c) a protein
d) a carbohydrate

KEYWORDS: enzyme catalyst pH substrate product active site reaction

1) The substrate binds to the active site. Like a key in a lock.
2) The enzyme changes shape, which catalyzes the chemical reaction between the substrates.
3) The product is released when the reaction is complete. The enzyme is ready for another reaction.

word	meaning
Substrate	A specific substrate on which an enzyme acts.
Enzyme	Acts as a catalyst.
Product	A material produced at the end of a chemical reaction

Do you remember the words, substrate, product, and enzyme.

What is
the pH ?
The pH is a value that is used to express the acidity or alkalinity of something. Enzyme reactions are affected by changes in temperature, pH and substrate concentration. This can change the shape of the enzymes and the chemical reaction will not work as well.

ENEYMOE AGHION

Task 1: Match the words with their definitions. Draw lines.

Task 2: Circle the correct words to complete the sentences below.
(1) A substrate attaches to the \qquad
a) peptide bond
b) active site
c) activator
(2) Organic molecules that catalyze reactions in living systems are called
a) enzymes
b) substrates
c) carbohydrates
d) phospholipids
(3) What two factors can affect enzyme activity?
a) pH and product
b) temperature and product
c) temperature and pH

Task 3:

Draw a diagram fully labeled on how a substrate combines to the active site, how the enzyme changes shape and where the product is. The first diagram has been done for you.

Substrate			Product

BLOOD GIRCULATION AND HKI MEAPTU

```
KEYWORDS:
circulate/circulation veins arteries chambers valves
```

Today, Moza is learning about blood circulation and the heart.
Read and listen to the lesson, then do the activities:

BLOOD GHRGULATON AND THIB MEART

Mrs Hessa: Yes it is, Moza! And it's the heart that moves blood round the body. Look at the board. The heart is made of four areas called chambers. Together, these chambers move (pump) blood around the body. Between the chambers are valves. Valves are flaps that let blood flow in one direction, but not back.
Moza: But what about arteries and veins, Mrs. Hessa?
A flap
Mrs Hessa: An artery is a thin blood vessel that takes blood away from the heart.

The blood in our arteries has oxygen. A vein is a blood vessel taking blood towards the heart. The blood in our veins doesn't contain oxygen.

Task 1:

Match the following parts. Draw lines.
(1) Veins \longleftarrow a) carry blood to the heart.
(2) Arteries

b) are areas inside the heart.
(3) Chambers c) take blood away from the heart.
(4) Valves \qquad d) have flaps that don't let blood go back.

Task 2:

Choose the correct words to complete the sentences.
(1) Our take blood away from the heart.

Right Ventricle
a) veins
b) arteries
c) valves
(2) control the direction of the flow of blood.
a) Chambers
b) Veins
c) Valves
(3) Valves let blood flow from one \qquad to another.

a) chamber
b) vein
c) artery

BLOOD GIRGULAHON AND HHE MEARH

Task 3: WORK IN PAIRS.
ONE of these sentences is FALSE. Which one is it? Explain why.
(1) Veins carry blood toward the heart.
(2) Valves move blood around the body.
(3) The heart has four chambers.

TRUE
true

TRUE

FALSE

FALSE

Number
is FALSE, because

Task 4:
Look at the diagram below, use the diagrams at the beginning of the lesson to help you label it fully:

BLOOD GHRGULATON AND THIB MEART

Task 5: work in pairs.
Ask and answer the following questions about blood circulation and the heart.
What's the difference between veins and arteries?

Easy! Veins ... but arteries...

Valves ...
What do valves do?

How many chambers are there?

Together, what do they do?
There are...
Together, they...

5) The heart has four

1) The blood in the arteries has (exce言T pulmonary artery)
2) These carry blood to the heart.巨
3) The blood in your body goes round and round. I \dagger \qquad

Yes, Sir. The heme group is a chemical group containing iron atoms at the centre. Wow! So much goes on in our bodies!

RED BLOOD GELIS

Task 1:

Circle the diagram that looks like a red blood cell.

c)

Task 2:

Which statements refer to blood cells? Tick the correct ones.

Task 3:

Use the words in the box below to complete the sentences:

Task 4:

Find the following words in the wordsearch

Task 5:

Work in pairs. Ask and answer the questions in pairs:
What does heme group mean?

What is our blood a It means...
mixture of?

It is a mixture of...

It forms by
ar
g

SCIENTIFIC ENGLISH SCIENCE CHEMISTRY

| KEYWORDS: | atoms
 nucleus | electrons
 elements | protons |
| :---: | :--- | :---: | :---: | | neutrons |
| :---: |

Today, Khalid and Jassim are learning about the Atomic Structure.
Read and listen to the lesson, then do the activities that follow.

The Nucleus: contains protons (positively charged) and neutrons (no charge)

Atomic

(negatively charged) moving around.

Today, we are studying the atomic structure. Atoms are the basic units of matter. On the board, you can see that atoms consist of: protons, neutrons and electrons. Protons and neutrons are in the centre of the atom. They make the nucleus. Electrons move around the nucleus. Atoms make elements. Can you tell me about elements, Khalid?

Yes, I can, Sir! An element is a substance made from one type of atom. Scientists often call elements "the building blocks of life".

ATOMIG STBUGTURE 1

That's right! Look at the previous page, hydrogen (H), oxygen (O) and iron (Fe) are common elements. There are over 100 elements. You can see them on a periodic table.

Task 1:

Work in pairs. Find the incorrect word in each sentence and correct it.
Example: Atoms have ten parts. three
(1) The nucleus is made of protons and electrons.

(3) You can find all known atoms in the periodic table.
(4) The basic units of matter are elements.

Task 2:

Match the two parts to make correct sentences. Draw lines.
(1) An element
a) is made from one kind of atom

AIOMIG STRUGTURE 1

Task 3:

Use the words in the box to label the diagram below:

Task 4:
Work in pairs. Ask and answer the following questions about atomic structure:

KEYWORDS: allotropy diamond graphite carbon fullerene

Dr. Hassan is teaching the class about allotropy.
Read and listen to the lesson, then do the activities that follow.

Al-lot-ro-py! That sounds difficult! Can you explain it to us please, Sir?

Yes, Jassim! It's not difficult at all! Allotropy is when the same element exists in more than one form. It means it looks different. Look at the board. Carbon is an element. Carbon can be in three forms; diamond,
 graphite and fullerene.

Are diamonds, graphite and fullerenes similar? Do they look the same and feel the same?

ATOMIG STRUGTURE 2

Dr. Hassan: That's the interesting thing, Jassim. No, they don't look the same at all! A diamond is a very hard stone. It's the hardest substance known. It's very valuable and useful. We use them to make jewellery, such as rings and necklaces.
Jassim: What about graphite, Sir?
Dr. Hassan: Graphite is very soft and slippery! It looks like a rock. You see it every day because we use it to make pencils.
Jassim: Are fullerenes (full-er-eens) soft too?
Dr. Hassan: Yes. Scientists only found out about fullerenes in 1985. A fullerene is a spherical carbon molecule.

Jassim: Thank you, Sir. It's very clear now. And it's very interesting.

Task 1:
Match the terms with the correct definition.

Task 2:

Label what the objects below represent:

ATOMIC STRUGTURE 2

Task 3:

Let's work in pairs. ONE of these sentences is FALSE. Which one is it? Explain why.
(1) Diamonds and fullerenes are made from the same element.

TRUE
TRUE

TRUE

FALSE
FALSE

Number is TRUE.

Number is FALSE, because

Number is FALSE, because

Task 4:

What is allotropy?
Allotropy is

What are the properties of diamonds?

They're special because.....

What are the differences between diamonds and graphite?

Diamonds are but graphite is.....

Today, Reem and Moza are learning about Chemical bonding and Metallic
Bonding. Read and listen to the lesson, then do the activities that follow.

When this happens in metals, it is called metallic bonding.

Today's subject is bonding. Bonding is when things join together, and chemical bonding is when atoms join or combine together, like those on the board. Metallic means with or including metals. Metallic bonding is when atoms in metals join together. Did you study metallic bonding before, Reem?

Yes, I did! It's very interesting! When metals mix together, they make something called an alloy. It's a kind of new metal. Steel and bronze are examples of alloys. Bronze is made from copper and tin. Steel is an alloy made of iron and carbon. Steel is a very useful alloy because it's strong and we can use it to make so many things.

Task 1:

ONE of these sentences is FALSE. Which one is it? Explain why.
(1) Atoms join together in chemical bonding.
TRUE

FALSE
(2) Copper is an alloy.
(3) We make alloys by joining metals together.

TRUE
TRUE

FALSE
false

Number浔 is FALSE, because

Task 2:

Match each term with its description. Draw lines.
(1) Alloy

a) combine together.
(2) Chemical bonding

b) a mixture made from two metals.
(3) Bonding \qquad c) when metals join together.
(4) Metallic bonding \qquad d) with or including metals.
(5) Metallic
 when atoms join together.

Task 3:

Choose the correct answer. Is it a, b, or c ?
1

is an alloy.

a) Copper
b) Bronze
c) An atom
(2) When copper and atoms join together, it is
a) metallic bonding
b) bonding
c) Both a and b
(3) When copper and tin join together, they make
a) an alloy
b) atoms
c) electrons
(4) When iron and carbon join together, they make
a) steel
b) copper
c) bronze

BONDINC

Task 4:

Work in pairs. Ask and answer these questions about today's lesson:
What is chemical bonding?

What is an alloy?
Easy! It's....

An alloy is..... For example...

Why is steel an important alloy?

Because.....

Task 5:

Nice work! Now complete this crossword about Bonding.

Across
4) An alloy
5) Chemical bonding is when togeth $\overline{\overline{\overline{E L T}}}$.
\qquad
3) When metals join together, it's bonding \qquad

KEYWORDS: mass mass spectrometer		
separate	vapor/vaporize accelerate	ions/ionize

Today, Dr. Masan is teaching Khalid and Mohammed about Measuring Atoms.
Read and listen to the lesson, then do the activities that follow.
 instrument. Then, there are 4 stages. First, it vaporizes the substance. A vapor is a gas, so that means it changes the solid or liquid into a gas.

Ionize is to make the atoms into ions. It does that by giving the atoms a positive charge. Then it accelerates the ions. To accelerate something is to make it go faster. The machine makes the ions move faster. Then it can separate them. When we separate things, we move them apart. Then, we can put them into different groups of size or shape. The spectrometer separates the ions of different masses. Then, we can measure the mass.

WIEASURNG ATOMS

Task 1:
ONE of these sentences is FALSE. Which one is it? Explain why.
(1) In a mass spectrometer a substance is firstly changed into a gas. TRUE FALSE
(2) A mass spectrometer ionizes in the third stage.
(3) A mass spectrometer can make ions move faster.

TRUE
TRUE
FALSE
FALSE

Number

is FALSE, because

Task 2:
Match the two parts to make complete sentences. Draw lines
(1) accelerate
(2) separate

a) move apart.

b) change into a gas.

(5) vaporize

e) move faster.

Task 3:

Choose the correct words to complete the following sentences.
(1) The mass spectrometer the mass of atoms.
a) increases
b) decreases
c) measures
(2) We can things into different groups.
a) change
b) accelerate
c) separate

(3) Things when they increase speed.
a) accelerate
b) measure
c) vaporize
(4) The mass spectrometer \qquad the atoms, by giving them a positive charge.
a) accelerates
b) increases
c) ionizes

WEASURNG ATOMS

Task 4:

Work in pairs. Ask and answer these questions about today's lesson:

What does a mass spectrometer do?

I know! I† measures...

What are the steps?
The first step is.. Then.
What's the difference between 'vaporize' and 'accelerate'?

They're completely different! Vaporize is... whereas accelerate is ...

Task 5:

Now, complete this crossword about the things you have studied today.

Across

3) When we \qquad something, we make it intō a gas.
4) After all the steps, we can measure the巨 of atoms.
5) The mass spectrometer changes the atoms into positive
6) A mass spectrometer can \equiv ions of different masses.
7) Go faster. \qquad

$\left.\begin{array}{|c|cccc|}\hline \text { KEYWORDS: } & \text { elements } & \begin{array}{c}\text { periodic table } \\ \text { groups }\end{array} & \begin{array}{c}\text { properties } \\ \text { metals }\end{array} & \text { periods } \\ \text { non-metals }\end{array}\right]$

Today we are looking at the periodic table. Look at the big table on the board above! A periodic table. There are more than 100 different elements. The periodic table is a chart showing all the elements arranged in a particular way. The vertical columns in the periodic table are called groups. Each group contains elements that have similar properties. The horizontal rows are called periods and this is based on the number of electrons the
 element has.

Ah! So all the elements we know are here! What does properties mean?

Properties depend on how an element looks and feels but also how it reacts in a chemical reaction. Let's look in a bit more detail.
The periodic table has eight main groups. For example, group 1 contains very reactive metals such as sodium - Na - while group 7 contains very reactive non-metals such as chlorine - Cl .

Note that you will never find a compound in the periodic table, because these consist of two or more different elements joined together by chemical bonds.

I can see the parts on the table that are metals (alakali and transition) and non-metals (gases)

[^0]Noble gases

PERIODIG TABLE

Task 1：

a Write down the names and symbols for five transition metals．
\square
（b）Write down the names and symbols for two Group 1 metals．

Name	Symbol	Name	Symbol

C Write down the names and symbols for five non－metals．

Name	Symbol								
$\bar{幺}$									

d Write down the name and symbol for the element that is in Group 1 and in the 4th Period．

目

PERIODIC TABLE

Task 2:

Match the two parts to make correct sentences. Draw lines.
(1) Periodic Table

a) Horizontal rows in the periodic table.
(2) Periods

b) Vertical columns in the periodic table
(3) Groups $<$
c) A table with all known elements
(4) Metals
(5) Non metals \leftarrow
 e) These are two types alkali and transition

KEYWORDS: | filtration evaporation simple distillation chromatography |
| :---: |
| fractional distillation |

Today, Mrs Hessa is teaching Moza about Chemical Industry.
Read and listen to the lesson, then do the activities.

Simple Distillation : This is by boiling a liquid and collecting the vapour by condensing it. So, now we can have the water and the sugar separated.

Chromatography is a process used to separate complex mixtures that have different colors or can be colored. It involves the molecules moving down a gel or paper. The smaller the molecule, the more it moves.

Filtration: When we separate a liquid and an insoluble solid - like sand and water.

Evaporation:

 Using heat to boil away the liquid so the solid remains, like separating water and sugar.Wow! That's amazing! So what is fractionation distillation?

In the chemical industry, it is important for scientists to be able to separate mixtures, for example, clean water, iron, aluminum. Let's look at some of the methods used, some are simple, others are more complex.

Fractional distillation is like distillation, but this time we separate two or more liquids, depending on the boiling points of each liquid. See the board below.
A good example is: fractional distillation of crude oil. Since they have different boiling points, the substances in crude oil can be separated using fractional distillation. The crude oil is evaporated and its vapours are allowed to condense at different temperatures in the fractionating column. Each fraction contains hydrocarbon molecules with a similar number of carbon atoms.

The diagram shows the main fractions from crude oil and their uses. Note that the gases condense at the top of the column, the liquids in the middle and the solids stay at the bottom.

Wow! That looks like a tough process. The temperatures are very high.

GIINTGAL INDUSTRY i \& 2

Task 1:
ONE of these sentences is FALSE. Which one is it? Explain why.
(1) Filtration is a process of separating a substance that is insoluble in a liquid.

FALSE

2 Water and sugar are separate using chromatography.
TRUE
FALSE
(3) Distillation takes place by boiling a liquid and collecting the vapor.

Task 2:
Match the terms with the correct process! Draw lines.
(1) Distillation
(2) Chromatography
(3) Evaporation

a)
b)

(4) Filtration

GUIEMTCAL INDUSHRV I \& 2

Task 3:

ONE of these sentences is FALSE. Which one is it? Explain why.
(1) Give an example of two liquids produced during the fractional distillation of crude oil.三
(2) Give one example of a gas produced during the fractional distillation of crude oil.需

Task 4:

Complete the sentences by using the correct words from the box.

1. Fractional distillation depends on
(2) Chromatogrophy is a good way to separate mixtures that have different
(3) Both distiallation and fractional distillation use

Task 6:

Find the following words in the wordsearch

SCIENTIFIC ENGLISH SCIENCE PHYSICS

grade 10

KEYWORDS: | fundamental quantities derived quantities mass |
| :---: |
| magnitude balance physical quantity measure/measurement |

Today, Khalid and Jassim are learning about Measuring Quantities.
Read and listen to the lesson, then do the activities that follow.

Measuring Physical Quantities

We can measure length and height in centimeters and meters

When we measure something, we find a number that shows the size or the amount of it. This is measurement. We measure height and length in meters and centimeters. We measure weight in grams and kilograms. Do you know what a physical quantity is, Khalid?

Yes! My book says a physical quantity is an amount we

WEASURTNG QUANTHTIES

The mass of an object is how much matter - or substance - it has. We can measure mass in kilograms and grams. On the board, you can see a balance. We use a balance to measure the weight or mass of something. The size of something is its magnitude. That's how big it is, or how much there is. Do you know the difference between fundamental quantities and derived quantities?

Yes I do! Fundamental quantities are ones that cannot be broken down any further, for example, time (in seconds) or distance (in meters). Derived quantities are the ones that come from a combination of fundamental quantities for example: force, velocity, density, area.

Task 1: Mark True of False.
(1) Height is a physical quantity.
(2) A balance can only measure weight.
(3) A number that shows the size of something is a measurement.
4. The units for velocity are a fundamental quantity.
(5) The units for pressure are a derived quantity.

TRUE

TRUE
TRUE

FALSE
FALSE
FALSE
FALSE
FALSE

Task 2:
Match the two parts to make correct sentences. Draw lines.

WEASURING QUANHITIES

Task 3:

Choose the correct words to complete the following sentences.
(1) We can measure all physical quantities in
a) meters
b) units
c) kilograms
(2) How much substance or matter there is in an object, is its

a) size
b) weight
c) mass
(3) We can measure \qquad in grams.
a) mass
c) weight
c) both a and b.
(4) We use a to measure mass.
a) ruler

c) substance

Task 4:

Work in pairs. Ask and answer the following questions about measurement.
What can a balance measure?

It can measure...

What's mass?

We use

PRECISION AND ACGURACY

KEYWORDS:	accuracy/accurate direction	vectors

Today, Mariam and Moza are learning about Precision and Accuracy. Read and listen to the lesson, then do the activities that follow.

Precison and Accuracy

\square

Yes, Mrs Hessa. The circles are targets. A target is what we aim at. The centre of the target is the bull's eye. That's what we want to hit.

PRIGGISION AND AGGURUGY

The targets show us about accuracy and precision. When a shot hits the bull's eye, it is accurate. When shots are close to each other, they are precise. When a measurement is the same as the real value, it is accurate. But when measurements are close to each other, they are precise. Can you explain what vectors and scalars are please, Mrs Hessa?

Yes, Mariam! The key word is direction. Direction is when something is moving to a certain place. Scalars are quantities that have magnitude - a size or amount - but no direction. For example, ' 5 km ' is a scalar. Vectors have magnitude and direction, such as north, south, east and west. For example, '5km north' is a vector. It has an amount (5 km) and a direction (north). $\uparrow 50 \mathrm{~km}$ North $=$ this is a vetor - it has magnitude and direction

Thank you, Mrs Hessa. It's much clearer now.

Task 1:

Work in Pairs. ONE of the following sentences is FALSE. Which one is it? Explain why.
(1) It is possible for measurement to be accurate and precise.

TRUE

TRUE

FALSE
(2) When we aim at a target, we want to hit the bull's eye.
(3) When shots are close to each other, it shows accuracy.
is FALSE, because
Number

PRIGGISION AND AGGURUGY

Task 2:

Match the following. Draw lines.

(5) vector
e) 50 m EAST
(6) scalar \qquad f) 100 m

Task 3:

Choose words from the box below to complete the following sentences:
(1) A vector has
(2) Five hundred meters is a

(3) is closeness to the real value.
(4) When measurements are very near to each other, it shows

PRIGGISION AND AGCURAGY

Task 4:
Work in pairs. Ask and answer the following questions about measurement:

What's the difference between precision and accuracy?

Precision is.... but accuracy is....

What's the difference between vectors and scalars?

Scalars have.....

 but vectors have ...

WIECHANICS AND KINEMATICS 1

KEYWORDS:

displacement
speed velocity
acceleration
Today, Khalid is learning about the terms related to Kinematics.
Read and listen to the lesson, then do the activities that follow.

Kinematics is the study of motion without being concerned with the forces that cause the motion.
The speed of an object tells us how fast an object is travelling and we calculate it using: speed $=$ distance \div time
Displacement can be defined as vector quantity which is the length of the shortest path connecting the point where a body starts to move and the point where the body finally

Both speed and velocity tell us how fast something is travelling. As velocity is a vector, it tells us what direction the object is travelling in.

$$
\text { Velocity }(\mathrm{m} / \mathrm{s})=\frac{\text { displacement change }(\mathrm{m})}{\text { time taken }(\mathrm{s})}
$$

For example, two cars are travelling at $30 \mathrm{~m} / \mathrm{s}$ along the same road but in opposite directions: One of the cars has a velocity of $+30 \mathrm{~m} / \mathrm{s}$ The other car has a velocity of $-30 \mathrm{~m} / \mathrm{s}$ (note the units!)

Yes Sir, but what about acceleration?

Acceleration tells us how rapidly something is changing velocity, for instance, the change in velocity in unit time. Deceleration is the same thing, but has a negative sign. This is when the velocity is decreasing.
Let us look at some graphs, this will help us understand better.

The y axis, represents acceleration, a, and the x axis \dagger represents time (\dagger).
Constant acceleration means getting faster and faster at a uniform rate.
This equation shows the relationship between acceleration, change in velocity and time taken: acceleration (metres per second squared $=\frac{\text { change in velocity (metres per second) }}{\text { time taken (second, } s \text {) }}$ For example, a car accelerates in $5 s$ from $25 \mathrm{~m} / \mathrm{s}$ to $35 \mathrm{~m} / \mathrm{s}$.

Its velocity changes by $35-25=10 \mathrm{~m} / \mathrm{s}$.
So, its acceleration is $10 \div 5=2 \mathrm{~m} / \mathrm{s}^{2}$. (note the units!)

MECHANICS AND KTNEMATICS 1

Task 1: Work out the speed in each of the following situations.
a) A mouse runs 20 m in 3 seconds.

b) A man runs 100 m in 10 seconds.
\qquad
c) A car reverses 50 m in 10 seconds.

d) A plane flies 90 m in 1 second.
e) A frog jumps 27 m in 9 seconds.

Task 2:

Write the names of the animals/objects in task 1, start with the slowest one at the top of the list.

Task 3:

Put the following in order, starting with number 1 being the highest possible acceleration:

Object	Lorry	Jet plane	Sprinter	Motorbike	Beetle
Picture					
Order					

Task 4:

What does the acceleration of an object tell us about the object?

WECHANJCS AND RINEMAITIGS 1

Task 5:

What are the units for acceleration?
Choose the correct answer from this list.

Task 6:

A car accelerates from rest to $30 \mathrm{~m} / \mathrm{s}$ in 15 s . What is its acceleration?

O $\quad 45 \mathrm{~m} / \mathrm{s}^{2}$

○ $\quad 450 \mathrm{~m} / \mathrm{s}^{2}$
$02 \mathrm{~m} / \mathrm{s}^{2}$

Task 7:

Look at the following diagram. Use the letters to describe what the displacement is, and state the distance travelled.

	Journey	distance
The distance travelled is	汽	
The displacement is		

WIECRANICS AND KINEMATICS 2

KEYWORDS:	forceequilibrium viscosity static	dynamic	coefficient of friction

Today, Mohamed is learning about the terms related to Mechanics.
Read and listen to the lesson, then do the activities that follow.
Some of the terms are simpler, so we will cover them first.
A force can be a push or a pull. You cannot see a force but often you can see what it does. Forces can change the speed of something, the direction it is moving in or its shape. For example, an elastic band gets longer if you pull it. Forces can cause deformation in objects. If you look at the football, it is being deformed due to the force of the kick.

Forces acting on an object can be added together to give a resultant force. Where they are the same and in opposite directions, the object will be in equilibrium.

Example 1

Equilibrium Force \#1 = 1

Example 2
Non-equilibrium Force \#1 = 2

Rubbing causes friction. It can be the surfaces between two solids rubbing, a solid surface and a liquid or a gas, etc. Anything! Whenever an object moves against another object, it feels frictional forces. These forces act in the opposite direction to the movement. Usually, friction makes it harder for things to move.

There are two forms of friction, dynamic and static.
 If you try to slide two objects past each other, a small amount of force will result in no motion. The force of friction is greater than the applied force.
This is static friction. If you apply a little more force, the object "breaks free" and slides, although you still need to apply a force to keep the object sliding. This is dynamic friction. You do not need to apply quite as much force to keep the object sliding as you needed to originally break free of static friction.

Viscosity is a measure of the resistance of a fluid which is being deformed. It is the "thickness" or "internal friction". Water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity. The lower viscous the fluid is, the greater its ease of movement (fluidity).

Related to this, is the coefficient of friction. The coefficient of friction is a number which represents the friction between two surfaces. Between two equal surfaces, the coefficient of friction will be the same. The symbol usually used for the coefficient of friction is? The rougher the material, the higher the number is.

MBCHANJCS AND KTNEMATICS 2

Task 1:

Identical steel balls were dropped into test tubes (A, B, C, D) with different oils. The time taken for the ball to drop depends on the viscosity. Which oil is the MOST VISCOUS?

Task 2:

Match the two parts to make correct sentences. Draw lines.

6 Balanced forces are the same size
f) but act in opposite directions.

MEGUANIGS AND RINIEMATIGS 2

Task 3:

For each of the following diagrams:
a) calculate the unbalanced force
b) say if the direction of the force is to the right, left, up or down.

1

(2)

(3)

a)

b)
a) $\bar{\equiv}$
b)
a)
b)
6

a)
b)
a)
a) $巨$
b)
5

4

a)
b)

WIBGMANICS AND RUNEMATICS 2

Task 4:

Match the two boxes to make correct sentences. Draw lines.
(1) When a force acts on an object...
(2) If no force acts on a stationary object...
(3) If a force acts in the opposite direction to the movement of an object...
(4) If no force acts on a moving object...

Task 5:

Answer the following questions:
(1) What is friction?

(2) What are the units that friction is measured in?

(3) In which direction does friction always act?

(4) What causes friction?

PROPERTIES OF MAITHB 1

Dr Hassan is explaining to Khalid the Properties of Matter.
Read and listen to the lesson, then do the activities that follow.

Solid
Arrangement of particles Movement of particles Diagram
close together close together regular pattern random vibrate about a move around fixed position each other

Pollen grain or smoke particle moving around.
Gas Atoms

Gas
far apart random move quickly in any direction

Now, the kinetic particle model explains the properties of the different states of matter. The particles in solids, liquids and gases have different amounts of energy. They are arranged differently and move in different ways. Look at the table

Who is Mr. Brown we sometimes hear or read about?

Ah! About 150 years ago a botanist, Robert Brown, observed pollen grains moving in a random way under his microscope. You can see the same effect with smoke today. We call it Brownian motion.
It was explained that the movement was due to collisions between the pollen and millions of smaller (and therefore invisible) gas atoms.

PROPERTIES OF MAINER 1

When objects are heated, they expand and when they are cooled, they contract. The particles in a solid start moving more and need more space.

In a gas, the particles move around more with more energy. In a liquid, they also start moving around more and need more space.

When a solid gets more and more hot, it turns into a liquid. We call it melting - like chocolate does!

When we heat a liquid and it turns into a gas, we call it boiling. This is the process of evaporation

When we make liquid very cold, it turns into a solid, We call it freezing.

PROPBRTIES OF MAINER 1

Task 1:

Tick the correct answer. What happens to the particles when a piece of chocolate is heated up?
\bigcirc they get bigger
O they get smaller
Othey move around more

Task 2:

Tick the correct answer. What happens to a bar of steel when it is cooled down?
O it gets longer
Oit gets shorter
O it stays the same length

Task 3:

Use the following words to label the diagram with arrows.
Circle where evaporation is tiquid gas boiling expanding
Circle where evaporation is taking place, write evaporgtion next to the circle.

PROPERTIES OF MATHER 1

Task 4:

Word Search: find the words below

PROPERTIES OF MAITER 2

KEYWORDS: pressure density upthrust weight

Mrs Hessa is explaining more about the Properties of Matter.
Read and listen to the lesson, then do the activities that follow.

Gas particles hit the walls of their container and cause pressure
 hit the walls of their container, they cause pressure. The more particles that hit the walls, the higher the pressure. This is why the pressure in a tyre or a balloon goes up when more air is pumped in.

PROPERTIES OF MAITER 2

Heating increases pressure

If a gas is heated up, its particles move around more quickly. They hit the walls of their container harder and more often. This increases the pressure. Sometimes the pressure gets so great that the container bursts. This is why balloons and tyres burst if you blow them up too much.

Weight is not the same as mass. The mass of a given object is the same everywhere, but its weight can change. The weight depends on the mass of the object and the strength of the gravitational field around it. Weight $=$ Mass \times Gravitational pull- On earth it is $10 \mathrm{~m} / \mathrm{s}^{2}$ The MASS of an object is connected to its VOLUME and DENSITY. Mass $=$ Density \times Volume!

Floating in water

Objects float in water when their weight is balanced by the upthrust from the water. The object will sink until the weight of the water it pushes out of the way is the same as the weight of the object.

PROPERTIES OF MAITER 2

Think about this:

Sink or Float?

Task 1:
Choose the correct answer.
(1) What is the unit of force called?

O the Newton, n
O the Newton, N
O the Neutron, N

The bowling ball is completely submerged in the water, thus the ball displaces a volume of water equal to the volume of the bowling ball.
The mass of the bowling ball is greater than the mass of the displaced water.
(2) Why does an astronaut weigh less on the moon than on the earth?

O the moon has no atmosphere.
O the moon has no gravity.

the force of gravity is weaker on the surface of the moon than on the surface of
the earth.
(3) What is the weight of a 20 kg box on the earth?

O2N
O 20 N
O 200 N

KEYWORDS:	longitudinal pitch	transverse amplitude	radiation frequency	compression eardrum

Today, Dr, Hassan is teaching Khalid and Jassim about waves and sound waves.
Read and listen to the lesson, then do the activities that follow
Sound waves are longitudinal waves. Their vibrations occur in the same direction as the direction of travel. Sound waves can only travel through a solid, liquid or gas.

WAIVES

These diagrams show snapshots from oscilloscope traces of three sounds.
1.

2.

3.

Sounds 1 and 2:

- the sound waves have the same frequency, so the sounds have the same pitch
- sound 2 has a greater amplitude than sound 1 , so sound 2 is louder.

Sounds 2 and 3:

- the sound waves have the same amplitude, so the sounds have the same loudness
- sound 3 has a greater frequency than sound 2 , so sound 3 is higher pitched.

Task 1:

(1) longitudinal

a) When the waves are tight together
(2) compression
b) Sound waves travel like this
(3) rarefaction \qquad c) When the waves are spread out
(4) frequency
\qquad d) When we change this, we change the pitch

Task 2:

(1) Light waves are,
a) amplitude
b) longitudinal
c) transverse
(2) Where sound waves come close together, we call it
a) frequency
b) compression
c) longitudinal
(3) can't travel through a vacuum.
a) Transverse waves
b) Light

Look at the diagrams below carefully.
Task 3:

Circle the diagram you think is correct.

1) Which one has a larger amplitude?

Corrections

Page NO.	Note	Amendment

Supervise and reviewed by:
 Majid A Hamadi

Designed by:

Mohammed Alrakhtawan
Cover designed by:
Ahmed Alhobaishi
Aaron Azagra

Reviewed and edited by:
National committees
First Edition 2013

[^0]: Alkali metals
 Transition metals

